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The Jython scripting language is an effective way to use the NISTMonte library to 
perform Monte Carlo simulations.  Jython is a Java* implementation of the Python 
scripting language.  The syntax of Jython is similar to the syntax of Python but, unlike 
Python, Jython has complete access to libraries compiled as Java byte-code.   Jython is 
freely available at http://www.jython.org.  A simple GUI based scripting environment 
(JythonGUI) is included with the NISTMonte package. 

Jython isn’t the only way to make use of NISTMonte.  NISTMonte can be called 
from within a Java application, library or applet like any Java library however writing 
and compiling a new Java application for each new simulation quickly becomes tedious.  
Jython provides a more responsive environment in which scripts can be readily written, 
modified and executed. 

This document is an introduction to Jython with a focus on scripting NISTMonte.  
It takes a pragmatic approach.  Rather than attempt to teach the language and then teach 
how to apply the language to NISTMonte, this document dives right in.  It doesn’t spend 
much time discussing the syntax of Jython – this information is available in the resources 
listed below.   Instead, it demonstrates through examples how Jython can access 
NISTMonte and how you can configure NISTMonte to perform sophisticated Monte 
Carlo simulations. 

Both the Windows Installer version of NISTMonte and the ZIP file version come 
with a set of example scripts.  These scripts are identified by an extension “.py”.  You 
will probably want to acquaint yourself with them.  Not only are they good examples of 
NISTMonte but they can also serve as models on which to base your own scripts.  
 

 
Figure 1: The Jython command line. 

 
                                                 
* Disclaimer: Certain commercial equipment, instruments, or materials are identified in this paper to foster 
understanding. Such identification does not imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor does it imply that the materials or equipment identified are 
necessarily the best available for the purpose. 
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Jython is a scripting language.  This means you can enter command directly from 
the command line.  The command will be executed and the result displayed as soon as 
you type <enter>.   Alternatively, you can load scripts from a text file.  Generally, the 
second mode of operation is a better match for the NISTMonte library.  In either case, the 
syntax is identical.  Load scripts using the File – Open menu item. 

Resources: 
1) A Jython language tutorial is freely available (upon registration) at 
http://www-106.ibm.com/developerworks/java/edu/j-dw-java-jython1-i.html?S_TACT=104AHW02 
 
2) Book - Jython Essentials (Samuele Pedroni and Noel Rappin, O'Reilly, March 2002)  - 
Recommended!
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Figure 2:  The description of the Jython language from 
http://www.jython.org/docs/whatis.html 

What is Jython? 

Jython is an implementation of the high-level, dynamic, object-oriented language 
Python seamlessly integrated with the Java platform. The predecessor to Jython, 
JPython, is certified as 100% Pure Java. Jython is freely available for both commercial 
and non-commercial use and is distributed with source code. Jython is complementary 
to Java and is especially suited for the following tasks: 

• Embedded scripting - Java programmers can add the Jython libraries to their 
system to allow end users to write simple or complicated scripts that add 
functionality to the application.  

• Interactive experimentation - Jython provides an interactive interpreter that 
can be used to interact with Java packages or with running Java applications. 
This allows programmers to experiment and debug any Java system using 
Jython.  

• Rapid application development - Python programs are typically 2-10X shorter 
than the equivalent Java program. This translates directly to increased 
programmer productivity. The seamless interaction between Python and Java 
allows developers to freely mix the two languages both during development and 
in shipping products.  

There are numerous alternative languages implemented for the Java VM. The following 
features help to separate Jython from the rest: 

• Dynamic compilation to Java bytecodes - leads to highest possible 
performance without sacrificing interactivity.  

• Ability to extend existing Java classes in Jython - allows effective use of 
abstract classes.  

• Optional static compilation - allows creation of applets, servlets, beans, ...  
• Bean Properties - make use of Java packages much easier.  
• Python Language - combines remarkable power with very clear syntax. It also 

supports a full object-oriented programming model which makes it a natural fit 
for Java's OO design.  
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Writing a script 
 All NISTMonte scripts have some common elements.  These elements are 
introduced in the following sections. 

Importing external libraries 
The scripting environment has a small amount of basic functionality built right in.  

To extend these capabilities you load external libraries in the form of JAR files.    The 
NISTMonte library (part of epq.jar) is loaded using the statement: 
 
import gov.nist.microanalysis.NISTMonte as nm 
 
The “as nm” syntax provides an alias that will be used extensively to refer to items 
within the gov.nist.microanalysis.NISTMonte library.  Notice the line does not need to be 
terminated by any special character (except a carriage return.) 
 
The import statement will usually be the first line in your Jython script files.  It may also 
show up elsewhere if other libraries are needed.   There are other common libraries that 
you might want to load.   These are imported by adding the lines: 
 
import gov.nist.microanalysis.EPQLibrary as epq 
import gov.nist.microanalysis.EPQTools as ept 
import java.io as jio 
import java.util as jutil 
 
Monte Carlo specific code is located in NISTMonte.  General microanalysis type code is 
located in EPQLibrary.  EPQTools contains non-algorithmic helper functions.  The other 
libraries are standard Java libraries.  

Building the sample 
A sample is defined in terms of one or more Region objects.  A Region object is defined 
by a Material object and a Shape object.  The Material object describes the composition 
and density of the Region and the Shape object describes the volume inside the Region. 
Multiple Region objects may be combined to form complex samples.   

Constructing a simple material 
m1=epq.Material() 
m1.defineByMoleFraction([epq.Element.Si,epq.Element.O],[1.0,2.0]) 
m1.setDensity(epq.ToSI.gPerCC(2.65)) 
m1.setName("Silicon dioxide") 
 

The first line creates a new variable called ‘m1’ that is a Material.  The name 
‘m1’ will be used in subsequent lines to refer to this particular Material variable.  The 
syntax is often ‘m1.someMethod’ where the ‘.’ indicates that the method operates on the 
specified variable.  So ‘m1.setDensity(…)’ sets the density of the Material referred to as 
‘m1’. 

The second line defines the constituents of the material as Silicon and Oxygen in 
ratio one atom of Si for each two atoms of O.  The elements are identified by their 
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abbreviation so lead is epq.Element.Pb and other elements are likewise identified.  You 
can add elements to the list but the number of elements in the first list (bracketed by ‘[‘ 
and ‘]’) and the number of elements in the second list must match.  There is no upper 
limit to the number of elements in a material. 

The third line defines the density of the Material.  The NISTMonte library uses 
exclusively SI units.  However, SI units are not always the most friendly.  The class ToSI 
(and its mirror FromSI) provides a handful of methods to facilitate converting from 
natural units into SI.  In this case, epq.ToSI.gPerCC converts 2.65 g/cc into 2650 kg/m3 
before passing the quantity to the setDensity function. 

The fourth line simply gives the Material a name. 
 
The following lines define a second Material – calcium carbonate.  The second material 
is given a distinct name ‘m2’ to differentiate it from ‘m1’ and to allow both definitions to 
remain in memory simultaneously. 
 
 
m2= epq.Material() 
m2.defineByMoleFraction([epq.Element.Ca, epq.Element.C,↓ 
epq.Element.O],[1.0, 1.0, 3.0]) 
m2.setDensity(epq.ToSI.gPerCC(2.7)); 
m2.setName(“Calcium carbonate”); 
 

The ↓ character indicates that the line should continue without a line break in the 
script file.  (Don’t enter the ↓ character.)  The limits of the written page have forced a line 
break on this page. 

Defining Shapes 
Various different types of Shape objects are provided with the library including 

spheres, blocks, shapes bounded by planes.  These basic shapes may be combined and 
differenced to create more complex shapes. 
 
s1=nm.Sphere([0,0,-1.0e-6],1.0e-6) 
subs = nm.MultiPlaneShape.createSubstrate([0.0, 0.0, -1.0],[0.0,↓ 
0.0, 0.0]) 
 

The first line creates a Sphere object assigned to the variable ‘s1’.  The center of 
the sphere is at the point x=0.0, y=0.0, z=-1.0e-6 and the radius of the sphere is 1.0e-6.  
Again, the units are SI so lengths are in meters.  The default initial beam trajectory is 
along the z-axis from negative z to positive z.  The natural place to center the sample is 
the origin [0.0,0.0,0.0].  In this case, the sphere is located slightly above the origin. 

The second line creates a substrate by defining a plane.  The plane is defined by a 
surface normal and a point on the plane.   Planes can be used to define a volume.  
Everything on one side of the plane is inside and everything on the other side is outside.  
The surface normal defines the inside and outside.  The surface normal always points 
outside.  So in this case, the substrate is defined as everything with z greater than 0.0. 

All locations and directions are defined using three-dimensional lists of floating 
point numbers.  As above, the list is bracketed by ‘[‘ and ‘]’ and list items are separated 
by commas. 
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Here are some other examples of basic shapes. 
 

film = nm.MultiPlaneShape.createFilm([0.0, 0.0, -1.0],[0.0, 0.0,↓ 0.0], 
1.0e-6) 
sqrt2= Math.sqrt(2.0) 
tilted = nm.MultiPlaneShape.createFilm([sqrt2, 0.0, -sqrt2], ↓ [0.0, 
0.0, 0.0], 1.0e-6) 
dims = [0.8e-6, 0.6e-6, 0.5e-6] 
point = [0.0, 0.0, 0.0] 
block = nm.MultiPlaneShape.createBlock(dims, point, 0.0, 0.0,↓ 0.0) 
tiltedBl = nm.MultiPlaneShape.createBlock(dims, point, Math.PI /↓ 4.0, 
Math.PI / 4.0, Math.PI / 4.0) 

Documentation 
This is a good time to mention the documentation.   The NISTMonte library has 

user oriented HTML documentation.  The documentation was written using Java-style 
syntax but also applies to Jython.  As an example, the HTML documentation for the 
MultiPlaneShape class looks like... 
 

gov.nist.microanalysis.NISTMonte  
Class MultiPlaneShape 

java.lang.Object 

 gov.nist.microanalysis.NISTMonte.MultiPlaneShape 
All Implemented Interfaces:  

MonteCarloSS.Shape 
 

public class MultiPlaneShape 
extends java.lang.Object 
implements MonteCarloSS.Shape 
 
MultiPlaneShape implements simple or more complex shapes as the region bounded by a 
series of planes. The planes are defined by a normal pointing to the outside of the body 
(imagine a porcupine) and a point on the plane. A point is determined to be inside the 
MultiPlane object if the point is on the inside (the side away from the direction of the 
surface normal) of each plane. 
 
Copyright: Not subject to copyright - 2004 
 
Company: National Institute of Standards and Technology 
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And the documentation for the MultiPlaneShape.createBlock method looks like… 
 

createBlock 

public static MultiPlaneShape createBlock(double[] dims, 
                                          double[] point, 
                                          double phi, 
                                          double theta, 
                                          double psi) 

Create a block of dimensions specified in dims, centered at point then rotated by 
the Euler angles phi, theta, psi. The rotation is a rotation phi around the z-axis, 
followed by a rotation theta around the y-axis and finally a rotation psi around the 
z-axis.  
Parameters: 
dims - double[] - The unrotated dimensions (x,y,z axis) 
point - double[] - The location of the center of the block 
phi - double - rotation about the z-axis (radians) 
theta - double - rotation about the y-axis (radians) 
psi - double - rotation about the x-axis (radians)  
Returns: 
MultiPlaneShape 

 
 
The documentation is provided in the NISTMonte package in the directory ‘doc’.  

The documentation is navigable through the ‘index.html’ file.   The documentation is the 
second best resource for learning the details of the library – the ultimate reference is to 
ask the author. 
  

Before leaving Shape classes, it is worth mentioning two special types of 
compound shapes. 
 
ShapeDifference(shape1,shape2) – The Shape that results from removing the volume 
that shape1 and shape2 have in common from shape1. 
 
SumShape([shape1,shape2,…,shapen]) – The Shape resulting from the sum of the 
volumes in shape1, shape2,…,shapen.  SumShape is most useful for combining Shapes 
that overlap into a single Shape.  

Combining Materials and Shapes into Regions 
A Region is defined by a Shape and a Material.   Regions are implemented as 

follows… 
 
r1=monte.addSubRegion(monte.getChamber(), m1,s1) 
r2=monte.addSubRegion(monte.getChamber(), m2,s2)  
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 All Region objects (except the Region returned by monte.getChamber()) are 
contained within other Region objects.  The monte.getChamber() Region is special.  It is 
predefined and consists of a 10 cm sphere filled with nothing (perfect vacuum). 
 The method addSubRegion is a member of the MonteCarloSS class and takes as 
arguments a Region, a Material and a Shape.  The Material and Shape are combined into 
a Region and the Region is placed inside the argument Region (monte.getChamber() is 
this case).  The new region is returned and in this case assigned to r1 and r2. 
 The new Region (r1 or r2) may then be used as the parent for a subsequent sub-
Region. 
 The relationship between Regions is subtle and worthy of a little extra 
explanation.   Regions are organized in an ancestral relationship.  Parent Region objects 
may contain child Region objects.  Child Region objects may acts as parent Region 
objects for their own child Region objects.  The key work here is contain.  Parent Region 
objects must fully contain all child Region objects.  In addition, child Region objects must 
not overlap.   
 These rules are sufficiently important that it is worth restating them. 
 

1. Parent Region objects must fully contain all child Region objects. 
2. Child Region objects must not overlap other child Region objects. 

 
Adherence to these rules is not verified by NISTMonte. If they are not obeyed, the 

resulting simulations will not perform as you intend. 
The ancestor of all user defined Regions is the Region returned by 

monte.getChamber().  As mentioned earlier, this Region is a 10 cm sphere filled with 
vacuum.  You should always add at least one Region using monte.getChamber() as the 
parent.  Think of this as be equivalent to placing your sample in the chamber. 

What does it mean for one Region to contain another?  When an electron is 
making a single step within a Region, there are three possible alternative end points – the 
electron may remain entirely within the current Region; the electron may reach the edge 
of the current region and exit to the parent Region; or the electron may intersect a child 
Region and thereby exit the current Region.  When an electron exits the current Region, 
the trajectory of the electron is stopped at the border of the Region and restarted in the 
new Region.  An electron is considered to be within only one Region at a time – the 
Region furthest down the ancestral tree (most child-like) that contains the current electron 
position.  The Region in which the electron is located fully defines the Material with 
which the electron is interacting.  It is as though the parent Region is hollowed out in the 
volume in which a child Region is located and filled with the child’s Material. 
 
r3=monte.addSubRegion(r1,m2, nm. Sphere([0.0,0.0,-1.0e-6],-0.5e-6) 
 

This statement adds a sub-Region to the recently defined r1 that is a 0.5 µm 
sphere of material m2.  The net result is the ancestral relationship in which r3 is a child of 
r1 which is a child of monte.getChamber(). 
 

You must use care if two sub-Regions overlap.  If they are of the same material, 
you ought to create a SumShape to represent the two Shapes as one.  If they are of 
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different Materials then there is an ambiguity – a volume defined as two different 
Materials.  If this case, it is best to use DifferenceShape to subtract the volume in one 
shape from the other to clarify which Material is desired. 

 
There is no limit to the number of generations of children. 

Configuring the simulation 
So, now that you have defined the sample, you may define the instrument 

conditions.    
 

monte.setElectronGun(epq.GaussianBeam(1.0e-9)) 
monte.setBeamEnergy(epq.ToSI.keV(25.0)) 
 
By default, the electron source is defined to be a Gaussian beam with width of 10 nm.  
The first line changes this to a Gaussian beam of 1 nm width.  The second line sets the 
beam energy.  Again, the native units for energy are Joules so use epq.ToSI.keV(…) to 
convert keV to Joules. 

Adding detectors 
To accumulate statistics it is necessary to add various different types of observers to the 
model. 
 
This can be a little confusing because by default all the model does it track electrons 
through a user defined set of Regions.  X-ray generation is not considered unless an 
instance of the XRayEventListener is attached to the model. 
 
xrel=nm.XRayEventListener(monte) 
monte.addActionListener(xrel) 
 
Now x-rays are generated but no statistics are accumulated.  To accumulate statistics you 
need to determine what type of statistics to accumulate. 
 
# add phi-rho-z stats 
przs=nm.PhiRhoStats.watchDefaultTransitions(xrel,-1.0e-6,4.0e-6) 
# add generation images 
imgs=nm.EmissionImage.watchDefaultTransitions(xrel,512,5.0e-6) 
 
These two expressions add two different mechanisms to visualize the x-ray generation.   
The first creates a set of  accumulators to collect phi-rho-z curves for the dominant line in 
each family for each element in the sample.  The second creates images that represent the 
spatial dependence of emission from the sample for the dominant line in each family for 
each element in the sample.   
 
In more detail: 
 
przs=nm.PhiRhoStats.watchDefaultTransitions(xrel,-1.0e-6,4.0e-6) 
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xrel – is the instance of XRayEventListener created above 
-1.0e-6 and 4.0e-6 represent the z-range that is divided into bin, accumulated and 
tabulated. 
przs is a variable that following the call will contain a list of PhiRhoStats objects one for 
each observed transition. 
 
imgs=nm.EmissionImage.watchDefaultTransitions(xrel,512,5.0e-6) 
 
xrel – is the instance of XrayEventListener created above 
512 is the image dimension (512 x 512) 
5.0e-6 sets the scale of the viewport. 
imgs is a variable that following the call will contain a list of EmissionImage objects one 
for each observed transition. 
 
The view port is of height and width equal to the scale.  The image is centered 
horizontally on the origin but vertically the view port is 10% above the origin and 90% 
below.   Thus, it is best to create samples horizontally centered on the origin but located 
below the origin in the positive Z direction. 
 
If this default view port does not work for you, it is possible to change the view port for 
each image independently. 
 
# rescale the images 
for i in imgs: 
 i.setXRange(-1e-6,1e-6); 
 i.setYRange(-1e-6,1e-6); 
 
Here the y range refers to the vertical axis in the image that represents the z-axis in the 
model. 
 
Note the syntax for loops.  As previously stated imgs is a list of EmissionImage objects. 
The for loop selects each one in turn and calls it ‘i’.  The extent of the for loop is defined 
by indentation -  in this case two lines.   These lines are repeated for each EmissionImage 
object in imgs. 

Adding non-x-ray related statistical accumulators 
 Other non-x-ray related accumulators are available.  They attach directly to the 
MonteCarloSS instance. 
 
To collect statistics on how many collisions occur before an electrons energy drops below 
the excitation energy for a specific shell add the following code… 
 
ss = nm.ScatterStats(epq.AtomicShell(epq.Element.Fe,↓ 
epq.AtomicShell.K)) 
monte.addEventListener(ss) 
 
To collect backscatter statistics add the following code… 
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bs= nm.BackscatterStats(monte) 
monte.addEventListener(bs) 
 
To collect images of the first 100 electron trajectories…  (The number 100 can be 
modified.) 
 
ti=nm.TrajectoryImage(512,512,5e-6) 
monte.addEventListenera(ti) 
 
5e-6 sets the scale much like for EmissionImage 

Run the simulation 
Now that the simulation is configured and the quantities of interest observed we can run 
the simulation. 
 
monte.runMutipleTrajectories(1000) 
 
This line runs 1000 electrons through a full trajectory down to an energy of 50 eV. 

Saving the results 
After a little while the simulation will complete the desired number of trajectories.  All 
that remains is to save the results. 
 
dest="C:\\Documents and ↓ 
Settings\\nritchie\\Desktop\\inclusion\\PbBaSb\\"+nTraj.toString()+"\\" 
# output the phi-rho-z stats 
nm.PhiRhoStats.dumpToFiles(przs,dest) 
# output the trajectory image 
img.dumpToFile(dest) 
# output the transition image 
nm.EmissionImage.dumpToFiles(imgs,dest) 
# output the scattering statistics 
import java.io as jio 
ss.dump(jio.FileOutputStream(dest+”scattering.prn”) 
# output the backscatter statistics 
bs.dump(jio.FileOutputStream(dest+”backscatter.prn”) 
# output the trajectory image as a PNG file 
ti.dumpToFile(dest+”traj.png”) 

Conclusion 
That is all there it to it.  Use the example scripts.  With these, there is rarely a 

reason to create a new script from scratch.   Instead, find the script that is closest to what 
you want to do, rename it, and modify it.  

Using the Jython scripting language, it is (relatively) easy to set up scripts to run 
multiple simulations while varying any of the simulation parameters.  A couple of the 
scripts show examples of this.  You can raster the beam; you can change composition; 
you can change sample scale; you can change beam energy.  
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Example 1 
# load the necessary libraries 
import gov.nist.microanalysis.EPQLibrary as epq 
print "Starting..."; 
# create an instance of the model 
monte=epq.MonteCarloSS() 
monte.setBeamEnergy(epq.ToSI.keV(25.0)) 
# set the scale 
r=0.25e-6 
imgSize=512 
nTraj=10000 
print "Radius = "+r.toString() 
c=epq.MaterialFactory.createPureElement(epq.Element.C) 
partC=monte.addSubRegion(monte.getChamber(),c, nm.Sphere([0.0,0.0,-
r],r)) 
# create a lead particle 
partS = nm.Sphere([0.0,0.0,-r],0.95*r) 
pb=epq.MaterialFactory.createPureElement(epq.Element.Pb) 
part=monte.addSubRegion(partC,pb, partS) 
# create Ba-Sb Material 
basb=epq.Material() 
basb.defineByMoleFraction([epq.Element.Ba,epq.Element.Sb],[1.0,1.0]) 
basb.setDensity(epq.ToSI.gPerCC(16.0)) 
basb.setName("Ba-Sb") 
# combine the shape and material into a region and place it in the 
chamber 
inc0S= nm.Sphere([r/4,0,-r-r/4],r/4) 
inc1S= nm.Sphere([-r/4,0,-r-r/4],r/4) 
inc2S= nm.Sphere([0,0,-r+r/4],r/4) 
# combine the shape and material into a region and place it in the 
chamber 
monte.addSubRegion(part,basb, inc0S) 
monte.addSubRegion(part,basb, inc1S) 
monte.addSubRegion(part,basb, inc2S) 
# create a C substrate 
subs = nm.MultiPlaneShape.createSubstrate([0.0, 0.0, -1.0],[0.0, 0.0, 
0.0]) 
# combine the shape and material into a region and place it in the 
chamber 
monte.addSubRegion(monte.getChamber(), c, subs) 
# add an x-ray event listener 
xrel= nm.XRayEventListener(monte) 
monte.addActionListener(xrel) 
przs= nm.PhiRhoStats.watchDefaultTransitions(xrel,-1.0e-6,4.0e-6) 
# add a trajectory image 
img= nm.TrajectoryImage(imgSize,imgSize,5.0e-6) 
img.setXRange(-1e-6,1e-6); 
img.setYRange(-1e-6,1e-6); 
monte.addActionListener(img) 
# add generation images 
imgs= nm.EmissionImage.watchDefaultTransitions(xrel,imgSize,5.0e-6) 
# rescale the images 
for i in imgs: 
 i.setXRange(-1e-6,1e-6); 
 i.setYRange(-1e-6,1e-6); 
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# run the simulation 
monte.runMutipleTrajectories(nTraj) 
# determine where to save the results 
dest="C:\\Documents and 
Settings\\nritchie\\Desktop\\inclusion\\PbBaSb\\"+nTraj.toString()+"\\" 
# output the phi-rho-z stats 
nm.PhiRhoStats.dumpToFiles(przs,dest) 
# output the trajectory image 
img.dumpToFile(dest) 
# output the transition image 
nm.Image.dumpToFiles(imgs,dest) 
print "Done!" 
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Example 2 – An example of a loop modifying the sample scale 
import gov.nist.microanalysis.EPQLibrary as epq 
# create the material, shape and region 
mat=epq.MaterialFactory.createMaterial(epq.MaterialFactory.K3189) 
radii=[1.0e-7,2.0e-7,4.0e-7,8.0e-7,1.6e-6] 
for r in radii: 

monte=nm.MonteCarloSS() 
 shape = nm.Sphere([0.0,0.0,-1.01*r],r) 
 epq.MonteCarloSS.Region(monte, monte.getChamber(), mat, shape) 
  
 mat=epq.MaterialFactory.createPureElement(epq.Element.C) 
 shape = nm.MultiPlaneShape.createSubstrate([0.0, 0.0, -1.0],[0.0, 
0.0, 0.0]) 
 epq.MonteCarloSS.Region(monte, monte.getChamber(), mat, shape) 
 
 # add event listeners 
 xrel= nm.XRayEventListener(monte) 
 monte.addActionListener(xrel) 
 przs= nm.PhiRhoStats.watchDefaultTransitions(xrel,-2.0e-6,8.0e-6) 
 # add a trajectory image 
 img= nm.TrajectoryImage(512,512,10.0e-6) 
 monte.addActionListener(img) 
 # run the simulation 
 monte.runMutipleTrajectories(1000) 
 # determine where to save the results 
 dest="c:\\temp\\crap\\K3189\\particles\\radius=1 micron\\" 
 # output the phi-rho-z stats 
 nm.PhiRhoStats.dumpToFiles(przs,dest) 
 # output the trajectory image 
 img.dumpToFile(dest) 
print "Done" 
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Example 3 – Another example of a loop modifying the sample scale 
 
import gov.nist.microanalysis.EPQLibrary as epq 
# create an instance of the model 
print "Start..."; 
for i in range(1,11): 
 monte=epq.MonteCarloSS() 
 monte.setBeamEnergy(epq.ToSI.keV(25.0)) 
 # create the material, shape and region 
 mat=epq.Material() 
 mat.defineByMoleFraction([epq.Element.Mn,epq.Element.S],[1.0,1.0]
) 
 mat.setDensity(epq.ToSI.gPerCC(4.0)) 
 mat.setName("MnS") 
 r=1.0e-6+i*0.1e-6 
 print "Radius = "+r.toString() 
 # create a hemispherical region 
 sphere = epq.MCSS_Sphere([0.0,0.0,0.0],r) 
 plane = epq.MCSS_MultiPlaneShape.createSubstrate([0.0, 0.0, 
1.0],[0.0, 0.0, 0.0]) 
 epq.MonteCarloSS.Region(monte, monte.getChamber(), mat, 
epq.MCSS_ShapeDifference(sphere, plane)) 
 # create a hole in the substrate into which to place the 
hemisphere 
 mat=epq.MaterialFactory.createPureElement(epq.Element.Fe) 
 sphere = epq.MCSS_Sphere([0.0,0.0,0.0],1.001*r) 
 subs = epq.MCSS_MultiPlaneShape.createSubstrate([0.0, 0.0, -
1.0],[0.0, 0.0, 0.0]) 
 epq.MonteCarloSS.Region(monte, monte.getChamber(), mat, 
epq.MCSS_ShapeDifference(subs, sphere)) 
 # add event listeners 
 xrel=epq.MCSS_XRayEventListener(monte) 
 monte.addActionListener(xrel) 
 przs=epq.MCSS_PhiRhoStats.watchDefaultTransitions(xrel,-1.0e-
6,4.0e-6) 
 # add a trajectory image 
 img=epq.MCSS_TrajectoryImage(2048,2048,5.0e-6) 
 monte.addActionListener(img) 
 # add generation images 
 imgs=epq.MCSS_Image.watchDefaultTransitions(xrel,256,5.0e-6) 
 # run the simulation 
 monte.runMutipleTrajectories(1000) 
 # determine where to save the results 
 dest="e:\\K3189\\inclusions\\MnS\\radius="+r.toString()+"\\" 
 # output the phi-rho-z stats 
 epq.MCSS_PhiRhoStats.dumpToFiles(przs,dest) 
 # output the trajectory image 
 img.dumpToFile(dest) 
 # output the transition image 
 epq.MCSS_Image.dumpToFiles(imgs,dest) 
print "Done!" 


